Kolmogorov Complexity, Lovász Local Lemma and Critical Exponents

نویسنده

  • Andrey Yu. Rumyantsev
چکیده

D. Krieger and J. Shallit have proved that every real number greater than 1 is a critical exponent of some sequence [1]. We show how this result can be derived from some general statements about sequences whose subsequences have (almost) maximal Kolmogorov complexity. In this way one can also construct a sequence that has no “approximate” fractional powers with exponent that exceeds a given value. 1 Kolmogorov complexity of subsequences Let ω = ω0ω1 . . . be an infinite binary sequence. For any finite set A ⊂ N let ω(A) be a binary string of length #A formed by ωi with i ∈ A (in the same order as in ω). We want to construct a sequence ω such that strings ω(A) have high Kolmogorov complexity for all simple A. (See [3] for the definition and properties of Kolmogorov complexity. We use prefix complexity and denote it by K, but plain complexity can also be used with minimal changes.) Theorem 1. Let γ be a positive real number less than 1. Then there exists a sequence ω and an integer N such that for any finite set A of cardinality at least N the inequality

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Kolmogorov Complexity Proof of the Lovász Local Lemma for Satis ability ∗

Recently, Moser and Tardos [MT10] came up with a constructive proof of the Lovász Local Lemma. In this paper, we give another constructive proof of the lemma, based on Kolmogorov complexity. Actually, we even improve the Local Lemma slightly.

متن کامل

A Kolmogorov Complexity Proof of the Lovász Local Lemma for Satisfiability

Recently, Moser and Tardos [MT10] came up with a constructive proof of the Lovász Local Lemma. In this paper, we give another constructive proof of the lemma, based on Kolmogorov complexity. Actually, we even improve the Local Lemma slightly.

متن کامل

Coloring non-uniform hypergraphs: a new algorithmic approach to the general Lovász local lemma

The Lovász Local Lemma is a sieve method to prove the existence of certain structures with certain prescribed properties. In most of its applications the Lovász Local Lemma does not supply a polynomial-time algorithm for finding these structures. Beck was the first who gave a method of converting some of these existence proofs into efficient algorithmic procedures, at the cost of loosing a litt...

متن کامل

A Simple Algorithmic Proof of the Symmetric Lopsided Lovász Local Lemma

We provide a simple algorithmic proof for the symmetric Lopsided Lovász Local Lemma, a variant of the classic Lovász Local Lemma, where, roughly, only the degree of the negatively correlated undesirable events counts. Our analysis refers to the algorithm by Moser in 2009, however it is based on a simple application of the probabilistic method, rather than a counting argument, as are most of the...

متن کامل

Forbidden Substrings, Kolmogorov Complexity and Almost Periodic Sequences

Assume that for some α < 1 and for all nutural n a set Fn of at most 2 “forbidden” binary strings of length n is fixed. Then there exists an infinite binary sequence ω that does not have (long) forbidden substrings. We prove this combinatorial statement by translating it into a statement about Kolmogorov complexity and compare this proof with a combinatorial one based on Laslo Lovasz local lemm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007